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A two-scale model for liquid–solid phase transitions with equiaxed dendritic mi-
crostructure in binary material in the case of slow solute diffusion is presented. The
model consists of a macroscopic energy transport equation and, for each point of
the macroscopic domain, a local cell problem describing the evolution of the micro-
structure and the microsegregation. It is derived by formal homogenization of a sharp
interface model, including the Gibbs–Thomson law and kinetic undercooling. Based
on the two-scale model, a numerical two-scale method for the simulation of phase
transitions with dendritic microstructure is developed, and numerical examples are
presented. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In liquid–solid phase transitions such as the casting of metals often a specific dendritic
microstructure of the phase interface is observed. In Fig. 1, on the right half, the equiaxed
morphology is depicted; it consists of crystals starting to grow from small initial seeds
in all directions. On the left side the columnar growth is shown, consisting of columnar
dendrites growing in the direction of the heat flow. In both cases a side branching into
dendritic arms of second or sometimes even third order is observed. The microstructure has
a profound influence on the properties and the quality of the material. It affects in particular
the grain structure and the microsegregation (small-scale variations of the composition of
the material). The microstructure is the consequence of an instability of a “flat” liquid–solid
interface with respect to small perturbations. It scale must be limited by surface energy
terms. The phenomenologically simplest models capable of describing the evolution of mi-
crostructure on the microscopic scale are sharp interface models with surface tension given
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FIG. 1. Microstructure in liquid–solid phase transitions.

by the Gibbs–Thomson law and possibly kinetic undercooling. The numerical simulation
of single-crystal growth is a well-studied task; numerical techniques range from interface-
tracking methods [2, 10, 21, 22], to level-set methods [24], to phase-field methods [4, 12,
28]. However, these methods need a very detailed resolution of every crystal in order to
give reliable results; therefore they are not directly applicable to the simulation of a whole
macroscopic structure such as a cast. In the past decade there has been considerable effort
put into developing purely macroscopic models for the microstructure evolution in castings
(see, e.g., [3, 23]). However, these models usually need evolution laws for certain para-
meters of the microstructure which can be derived only in the case of very simple model
problems with a limited range of validity.

In this contribution a new two-scale model for the evolution of an equiaxed microstructure
in binary material with “fast” heat and “slow” solute diffusion is presented. The model is
based on a decomposition of the process into two scales, with the macroscopic scale having
the size of the whole domain and the microscopic scale that of single crystals. This is done
by coupling a macroscopic homogenized energy transport equation with microscopic cell
problems describing the evolution of the single crystals and the microsegregation. The model
is derived by homogenization via formal asymptotic expansion of a sharp interface model
for binary material involving surface energy and kinetic undercooling. The sharp interface
model is presented in Section 2. In Section 3 the formal homogenization is carried out and
the two-scale model is presented. In Section 4 the discretization of the two-scale model by
finite elements and the solution methods for the microscopic cell problems are explained.
Section 5 contains the results of numerical computations in two space dimensions.

2. THE SHARP INTERFACE MODEL

In a sharp interface model (Fig. 2) the domain under consideration, � ⊂ R
N with space

dimension N ∈ N, is separated at each time t ∈ IT with time interval IT = [0; T ] into a
domain ��(t) containing only liquid material and �s(t) containing the solidified material.
Both domains are separated by the phase interface �I (t). These domains vary in time, and
they are a priori unknown; their determination is part of the problem. The required variables
in a phase-transition problem for binary material are temperature T, concentration ck of
one of the components of the material in liquid (k = �) and solid (k = s) material, and
velocity vs of the phase interface, measured in the direction of the outer normal ns of the
solid domain. The material properties shall be described by the density of internal energy
uk = uk(T, ck), k = �, s, the chemical potentialµk = µk(T, ck), the heat conductivity K (k),
the solute diffusivity D(k), the curvature multiplier σ , the kinetic multiplier β, and a function
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FIG. 2. Sharp interface model.

b(T, µ) derived from the phase diagram. Then the model studied here is given by the
differential equations

∂t uk − ∇ · (K (k)∇T
)− ∇ ·

(
D(k) ∂uk

∂ck
∇ck

)
= f, (1)

∂t ck − ∇ · (D(k)∇ck
) = 0, (2)

defined for t ∈ IT and x ∈ �k(t), k = �, s; by the boundary conditions on the phase inter-
face �I (t),

µ�(T, c�) = µs(T, cs), (3)[
K

∂T

∂n
+ D

∂u

∂c

∂c

∂n

]
= −[u]vs, (4)

[
D

∂c

∂n

]
= −[c]vs, (5)

b(T, µ) = −σκ − βvs; (6)

by boundary conditions on the boundary of the whole domain � = ∂�,

K
∂T

∂n
+ αT = f�, (7)

D
∂c

∂n
= 0; (8)

and by initial conditions

T (t = 0, x) = T (0)(x) and c(t = 0, x) = c(0)(x), x ∈ �,

for temperature and concentration and by

�s(t = 0) = �(0)
s

for the initial partition into solid and liquid domain. The function f in (1) represents
a volume heat source, and the coefficient α and the function f� in (7) describe a heat
exchange condition at the boundary with heat exchange coefficient α and outer temperature
f�
α

. The letter κ denotes the mean curvature, taken positive for �s being convex, and
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the bracket [·] denotes the jump of the corresponding quantity at the phase interface, more
precisely, [K ∂T

∂n ] := K (�)∇T� · n� + K (s)∇Ts · ns and [u] := us − u�. The functions uk and
µk are assumed to be sufficiently smooth, but they may be different in solid and liquid.
Equation (1) is a heat transport equation, where the second term corresponds to energy
transport due to heat diffusion and the third one to energy transport due to solute diffusion;
Eq. (2) is a standard solute diffusion equation. Condition (3) prescribes continuity of the
chemical potential across the interface; since the functions µs and µ� are usually not equal,
this implies a discontinuity of the concentration, the miscibility gap. Conditions (4) and
(5) are local conservation laws for energy and solute across the interface �I moving with
velocity vs in the direction of the outward normal of �s . Equation (6) is a generalized Stefan
condition with Gibbs–Thomson undercooling and kinetic undercooling adapted to the case
of a binary mixture. This condition determines the velocity vs of the interface �I . The
function b is specified from the physics of the phase transition, in particular from the phase
diagram. In the simplest case of a linear model it is given by b(T, µ) = b1T + b2µ + b3

with constants b1, b2, and b3.
The model described here is studied in [15] for the case of vanishing kinetic coeffi-

cient β = 0. There, the function b(T, µ) is taken as the solid–liquid difference b(T, µ) =
[g(T, µ)] := gs(T, µ) − g�(T, µ) of the Legendre transform gk := uk

T − µk

T ck − sk of the
entropy sk with respect to the variables 1

T and −µ

T . The existence of a weak solution is
proved under some growth conditions for the entropy. In this case, however, the solution is
not unique in general. Existence and uniqueness results for vanishing kinetic coefficients
have been proved only recently for pure material [1, 7]. For the case of nonvanishing kinetic
coefficients (whose mathematical structure is simpler), also only the case of pure material
has been studied. Existence and uniqueness results are derived in [6, 19].

3. HOMOGENIZATION AND TWO-SCALE MODEL

In this section we consider an idealized microstructure consisting of equiaxed crystals
whose midpoints are located at the sites of a uniform grid, c.f., Fig. 3. The scale of the
microstructure is given by a small parameter, ε > 0, signifying the spacing of this grid.
This situation may arise in the case of instantaneous nucleation, where small solid kernels
of a given distribution and a given size nucleate at a given undercooling. The assumption of
periodic distribution of the initial kernels is, of course, not very realistic, but it is frequently
made in homogenization theory in order to derive macroscopic models which are then
also used for more general situations. The initial conditions of the problem have to reflect
this instantaneous periodic nucleation; more precisely we assume initial temperature and

FIG. 3. Idealized initial microstructure.
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concentration to be given by

Tε(t = 0, x) = T (0)

(
x,

x

ε

)
, (9)

cε(t = 0, x) = c(0)

(
x,

x

ε

)
, (10)

with functions T (0), c(0) ∈ C1(�, L2#(Y )), where Y ⊂ R
N is a periodicity cell and

L2#(Y ) := {y ∈ L2(R
N ) | y is Y -periodic}, and an initial solid domain given by

�(0)
s := � ∩

⋃
k∈Z

N

ε
({k} ⊕ Y (0)

s

)

with unit solid domain Y (0)
s ⊂ Y . Here, Tε and cε denote solutions of the problem with scale

parameter ε; in fact we consider a whole family of problems depending on parameter ε.
In homogenization theory it is often necessary to scale several physical parameters of the

problem, too. In order to maintain an equilibrium between surface and volume energy, the
density of surface energy σ is scaled proportional to ε,

σ = εσ0.

The solute diffusivity is scaled proportional to ε2,

D(k) = ε2 D(k)
0 ;

this is justified by the fact that solute diffusivity is usually much smaller than heat con-
ductivity. It is moreover known from material sciences that solute diffusivity is one of the
parameters determining the scale of the microstructure. The kinetic coefficient is scaled
proportional to ε−1,

β = ε−1β0.

Finally, let us remark that the curvature κ of a surface which is scaled by a factor ε is
proportional to ε−1, κ = κ0ε

−1.
The homogenization will be carried out by the method of asymptotic expansions. It is

assumed that the functions Tε and cε and the velocity vε of the phase interface admit the
asymptotic representations

Tε(t, x) = T0

(
t, x,

x

ε

)
+ εT1

(
t, x,

x

ε

)
+ ε2T2

(
t, x,

x

ε

)
+ · · · ,

cε(t, x) = c0

(
t, x,

x

ε

)
+ εc1

(
t, x,

x

ε

)
+ ε2c2

(
t, x,

x

ε

)
+ · · · , (11)

vε(t, x) = εv0

(
t, x,

x

ε

)
+ ε2v1

(
t, x,

x

ε

)
+ · · ·

valid for small ε. The leading orders T0, c0, and v0 of these functions are given by the limit
ε → 0. In order to compute these limits, the asymptotic expansions (11) are plugged into
problem (1)–(8), and the coefficients of different orders of ε are collected, starting from the
lowest order. The gradient of a function f (x, x

ε
) depending on a “slow” variable x and a
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“fast” variable y = x
ε

is given by ∇ f = ∇x f + 1
ε
∇y f|y= x

ε
or, shortly, ∇ = ∇x + 1

ε
∇y . This

leads to a sequence of problems of different orders.
The problem of 0th order consists of the terms in Eq. (1) of order ε−2, of the continuity

of the temperature of order ε0, and of Eq. (4) of order ε−1,

−∇y · (K (k)∇y T0
) = 0 in Yk(t, x), k = �, s,

[K∇y T0 · ny] = 0 on �I (t, x),

[T0] = 0 on �I (t, x),

and T0 satisfies periodic boundary conditions on ∂Y . Here, Yk for k = � and k = s denote
the liquid and solid part of the unit cell Y , and ny is the unit normal vector on their common
boundary �I , pointing outward from Ys . The solutions of the problem of 0th order are
constant functions. Hence, T0 is independent of y, T0 = T0(t, x).

The problem of 1st order consists of the terms in Eq. (1) of order ε−1, of the continuity
of the temperature of order ε1, and of Eq. (4) of order ε0,

−∇y · (K (k)(∇y T1 + ∇x T0)
) = 0 in Yk(t, x), k = �, s,

[K (∇y T1 + ∇x T0) · ny] = 0 on �I (t, x),

[T1] = 0 on �I (t, x),

and T1 satisfies periodic boundary conditions on ∂Y . Observe that the term ∇y T0 vanishes.
This is again a standard elliptic boundary value problem in variable y with a right hand side
depending on the constant vector ∇x · T0(t, x). Since the problem is linear, the solution can
be represented by

T1(t, x, y) =
N∑

j=1

Hj (t, x, y)∂x j T0(t, x), (12)

where Hj , j = 1, . . . , N , are solutions of the local cell problems

−∇y · (K (k)∇y Hj
) = ∇y · (K (k)e j

)
in Yk(t, x), k = �, s,

(13)
[K∇y Hj · ny] = −[K e j · ny] on �I (t, x)

satisfying periodic boundary conditions on ∂Y . Here, e j denotes the j th unit vector in
R

N . If the heat conductivity is constant and its value in the liquid and the solid is equal,
K (�) = K (s), then the term T1(t, x, y) is also independent of y.

The problem of 2nd order consists of the order ε0 terms in (1)–(3) and (6), the order ε1

terms in (4) and (5), and the order ε2 terms in the continuity of the temperature,

∂t uk
(
T0, c(k)

0

)− ∇y · (K (k)∇y T2
)− ∇x · (K (k)(∇x T0 + ∇y T1)

)
−∇y ·

(
K (k)∇x T1 + D(k)

0
∂uk

∂ck
∇yc(k)

0

)
= f in � × Yk(t), (14)

[(
K (∇y T2 + ∇x T1) + D0

∂u

∂c
∇yc0

)
· ny

]
+ [u(T0, c0)]v0 = 0 on � × �I (t), (15)
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∂t c
(k)
0 − ∇y · (D(k)

0 ∇yc(k)
0

) = 0 in � × Yk(t), (16)

µ�

(
T0, c(�)

0

) = µs
(
T0, c(s)

0

)
on � × �I (t), (17)

[D0∇yc0 · ny] + [c0]v0 = 0 on � × �I (t), (18)

b(T0, µ0) = −σ0κ0 − β0v0 on � × �I (t). (19)

We integrate Eq. (14) with respect to y ∈ Y and use the Green theorem for the ∇y · terms
and the exchange relation ∂t

∫
Ys (t)

w(t, y) dy = ∫Ys (t)
∂tw(t, y) dy + ∫

∂Ys (t)
w(t, y)vs(t, y)

dsy with the interface velocity vs . Then, from relation (15) it is seen that the boundary terms
at the phase interface vanish, and those at the boundary ∂Y of the unit cell vanish due to the
periodic boundary condition. Thus the macroscopic heat transport equation

∂t u
∗
c0,Ys

(T0) − ∇ · (K ∗∇T0) = f in � (20)

is obtained, with the averaged density of internal energy

u∗
c0,Ys

(T0) =
∑
k=�,s

∫
Yk

uk
(
T0, c(k)

0

)
dy,

the effective heat conductivity

K ∗
i j =

∑
k=�,s

∫
Yk

(
K (k)

i j +
N∑

r=1

K (k)
ir ∂yr Hj

)
dy, (21)

and a possibly averaged heat source f . Equations (16)–(19) represent a family of generalized
Stefan problems for concentration c0 and the partition into solid domain Ys and liquid domain
Y�, depending on the parameter x ∈ � and on the local macroscopic temperature evolution
T (·, x) as given data. They can be interpreted as local cell problems for the microsegregation
c0 and the evolution of the dendritic microstructure,

∂t ck(T0; µ0) − ∇y · (D̃(k)
0 ∇yµ0

) = 0 in Yk(t), k = �, s, (22)

[D̃0∇yµ0 · ny] + [c(T0; µ0)]v0 = 0 on �I (t), (23)

b(T0, µ0) = −σ0κ0 − β0v0 on �I (t). (24)

Here, in order to illustrate the structure as a generalized Stefan problem, the chemical
potential µ is used as variable. This requires a modification of the diffusivity to D̃(k) =
D(k) ∂ck

∂µ
.

The result of the formal homogenization is a two-scale model, consisting of a macroscopic
energy transport equation for the temperature T —which is constant on the microscopic
scale—and, at each point x of the macroscopic domain, a local cell problem describing the
evolution of the microstructure and the local variation of the concentration. Both problems
are coupled, with the internal energy and the heat conductivity of the macroscopic problem
depending on the variation of the concentration and on solid and liquid domains in the
microscopic problem; and the function b(T, µ) determining the equilibrium melting point
for µ depends on the macroscopic temperature.
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4. NUMERICAL METHOD

In order to illustrate the application of the two-scale model in a numerical algorithm,
we consider the simplest case, with constant diffusivity tensors independent of the phases,
with linear internal energy uk(T, c) = cV T + δk�L independent of the concentration, and
with chemical potential µ = µk(ck) = ck + δk�λ, with constant miscibility gap λ and linear
function b(T, µ) = b1T + b2µ. In this case, the effective heat conductivity is equal to the
constant original one, K ∗ = K . This leads to a problem consisting of the macroscopic heat
transport equation

∂t (cV T − εs L) − ∇ · (K∇T ) = f in �,
(25)

K
∂T

∂n
= f� on �,

with solid volume fraction εs(t, x) = |Ys (t,x)|
|Y | and microscopic cell problem

∂tµ − ∇y · (D∇yµ) = 0 in Yk(t), k = �, s,[
D

∂µ

∂ny

]
+ λvs = 0 on �I (t), (26)

b1T + b2µ = −σκ − βvs on �I (t).

Both problems are still coupled; the release of latent heat in the macroscopic problem
depends on the microscopic solid volume fraction, and the equilibrium melting point in the
microscopic problem depends on the macroscopic temperature.

Let us comment on the thermodynamical consistency of such a model. For an inter-
nal energy of the form uk = cV T + δk�L , the corresponding entropy is given by s =
sk = cV ln(T ) − ak(ck) with suitable functions ak, k = �, s, and the chemical potential is
µ = µk(T, ck) = a′

k(ck)T . The Legendre transform s∗
k = 1

T uk − µ

T ck − sk is then given by
s∗

k = cV (1 − ln(T )) + δk�
L
T − µ

T ck + ak(ck) and from this it follows that its solid–liquid
difference b(T, µ) = [s∗(T, µ)] is not linear. Therefore the completely linear model given
above is, in general, not thermodynamically consistent. It can be interpreted as a lineariza-
tion of a thermodynamically consistent model; e.g., for the special choice ak(ck) = 1

2 (ck +
δk�λ)2 we have µk(T, ck) = (ck + δk�λ)T and b(T, µ) = − L

T − λµ

T . Linearization of µk

and b around some point (T0, µ0) with corresponding concentrations ck0, k = �, s, gives
µk = (T − T0)(ck0 + δk�λ) + T0(ck − ck0) and b(T, µ) = L + λµ0

T 2
0

(T − T0) − λ
T0

(µ − µ0).

Hence, up to an additive constant the linear model given above is obtained.
The model can be also interpreted as a thermodynamically consistent linear one, but in this

case the interpretation of variables is changed. Let T̃ = − 1
T and µ̃ = µ

T denote the “dual”
variables to internal energy and concentration and let us assume the linear constitutive law
uk = T̃ + δk�L for internal energy and ck = µ̃ − δk�λ for the relation between chemical
potential and concentration. Then the entropy satisfies the relations ds = −T̃ du − µ̃dc
and can be defined as s = − 1

2 (T̃ 2 + µ̃2) in both solid and liquid material. Its Legendre
transform is s∗

k = −T̃ uk − µ̃ck − sk = − 1
2 (T̃ (T̃ + 2Lδk�) + µ̃(µ̃ − 2λδk�)) in solid (k =

s) and liquid (k = �) material; consequently the solid–liquid difference is [s∗(T̃ , µ̃)] =
T̃ L − µ̃λ. With this new interpretation of variables the linear model is thermodynamically
consistent.
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4.1. Discretization

Both the macroscopic heat transport equation (25) and the microscopic diffusion
equation (26) are discretized by finite differences in the time variable and finite elements in
the space variables. Let T (�)

h denote the coefficient vector of a representation of the discrete
(macroscopic) temperature at time step � with respect to a corresponding finite-element
basis of a subspace of H 1(�). Then we have a sequence of linear equations for the temper-
ature T (�)

h ,

(cV M�h + ��t K�h)T (�)
h = R�h + L M�hε

(�)
sh , (27)

with mass matrix M�h , stiffness matrix K�h , and ε
(�)
sh denoting the discretization of the

solid volume fraction computed from the microscopic problem. The right hand side R�h

depends on the temperature T (�−1)
h and the solid volume fraction ε

(�−1)
sh of the preceding

time step, on the discretization of the external heat source f and on the time implicity
parameter � ∈ [0, 1]. At each nodal point of the macroscopic temperature, a discrete local
cell problem is given. If µ

(�)
h denotes the coefficient vector of the discrete chemical potential

µ(t (�), x, ·) with respect to a finite-element basis of H 1
# (Y ), then this problem is given by

(MY h + ��t KY h)µ
(�)
h = RY h − MY h PY h

(
λχY (�)

sh

)
. (28)

Here, χY (�)

sh
is the characteristic function of a suitable discretization of the microscopic

solid domain Y (�)
s at time step �, and PY h denotes the L2-projection onto the finite-element

space. Equation (28) must be supplemented by an algorithm computing the evolution of
the solid phase from some discretized version of the Stefan condition in problem (26).
For this task, two different crystal growth algorithms are employed; they are explained in
Section 4.2. This also clarifies the definition of Y (�)

sh .

4.2. Algorithms for Crystal Growth

The numerical implementation of the two-scale model for phase transitions in binary
material requires the computation of crystal growth for pure material (formulated in the
chemical potential) on the microscopic scale. There are nowadays several techniques for
the computation of crystal growth available. Front tracking methods [2, 10, 21, 22] use
an explicit representation of the solid–liquid interface and a certain discretization of the
generalized Stefan condition; they are often inspired by techniques used to compute mean
curvature flow. In level-set methods [24] the interface is represented as a line of zeros of
an additional function for which a (usually hyperbolic) differential equation is specified. In
phase-field methods [4, 12, 28] the sharp transition between solid and liquid is approximated
by a smooth transition described with a phase field � changing continuously from its liquid
value (say � = −1) to its solid value (e.g., � = 1) within a diffuse interface of small thick-
ness. The evolution of the phase field is given by an additional parabolic differential equation.
Here, we decided to use and compare two different front-tracking methods: a variational al-
gorithm due to Almgren [2], where the Stefan condition is represented as a Euler–Lagrange
equation of an optimization problem for the unknown solid domain, and the method of
fully faceted interfaces due to Roosen and Taylor [21], based on an evolution of a discrete
interface represented by a polygonal line having only normals identical to those of the given
Wulff shape of the (anisotropic) surface energy. Both methods are shortly described below.
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4.2.1. The Variational Method

This method will be shortly explained for the case of vanishing kinetic coefficient β = 0.
The Stefan condition in (26) is represented as a Euler–Lagrange equation of the optimization
problem

Ys = Arg min
B∈A

Fb(B) (29)

with functional

Fb(B) :=
∫

∂ B
σ dsy +

∫
B

b dy,

where b = b(T, µ) here. With A ⊂ P(Y ) a set of admissible solid domains is denoted. The
appropriate choice of A is not considered here. The equivalence of problem (29) to the
Stefan condition is valid in the following sense: let B ⊂ Y be a solid domain with smooth
boundary ∂ B; then a variation Bη of B can be defined via a corresponding variation of the
boundary given by a scalar function w defined on ∂ B,

∂ Bη = {y + ηw(y)n(y) | y ∈ ∂ B},

where n denotes the normal of ∂ B pointing outside B (see Fig. 4). Then the variation of F
is given by

〈δF(B), w〉 := lim
η→0

1

η
(F(Bη) − F(B0)) =

∫
∂ B

[σκ + b]w dsy .

Hence, the Euler–Lagrange equation δF(B) = 0 is equivalent to a weak formulation of the
generalized Stefan condition b = −σκ .

This observation is used in the following way: the solid domain is represented in time
step � as the interior of a polygonal curve. The curve is varied by moving its nodal points in
certain given directions approximating the normal vectors; this leads to a clearly defined set
of admissible discrete solid domains (at least for small variations). Then, for a given function
b the optimization problem (29) is finite dimensional and can be solved by standard methods.
Here we use a Newton method; if necessary, the Hessian D2Fbh of the discretization Fbh

of Fb is changed to a positive definite matrix by adding a certain diagonal matrix, whose
entries are computed from a Cholesky decomposition of D2Fbh . The discrete diffusion

FIG. 4. Variation of a solid domain.
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FIG. 5. One-dimensional release of latent heat.

equation (28) and the discrete version of the optimization problem (29) are coupled; in
particular we need the chemical potential µ(�) of the current time step for the correct
definition of the optimization problem. In order to decouple both problems, the following
procedure is employed. First, the diffusion equation is solved with the old solid volume
Y (�−1)

s , this yields a solution µA. Then, a corrector term is added which approximately
accounts for the temperature change due to release of latent heat. This term may be computed
from a one-dimensional heat diffusion problem in normal direction. This is justified, if the
interface does not vary very much in the current time step; then the movement of the
interface can be locally approximated by a parallel translation of a line and the heat flux
due to release of latent heat only has a component perpendicular to this line. Using an
approximation with the 1D heat kernel, the correction term can be represented on the new
boundary only byµB := λ√

D
ρ√

2π�t
, whereρ denotes the distance to the old interface (Fig. 5).

This formula is first valid only on the new boundary, which is still unknown. However, it
is admissible to replace the functional Fbh by another functional having the same Euler–
Lagrange equation in its minimum, since we only compute this minimum. Therefore, the
formula can be employed at any point y ∈ Y . This leads to a precomputed chemical potential
H := µA + µB , which is used instead of µ(�) in the optimization problem. Solution of the
optimization problem gives the new solid domain Y (�)

s . Then, the discrete diffusion equation
is solved with this new solid domain; this yields the new chemical potential µ(�). For details
of the method see [2].

The method has been tested by computing the growth of a single crystal in an under-
cooled melt. The computation starts from a circular initial seed of radius r = 0.05, located
at the midpoint of a square with edge length 2.0. The data are specific heat cV = 1, heat
conductivity K = 1, latent heat L = 1, and undercooling �T = 0.5. The anisotropic sur-
face tension is given by σ = σ0(1 − 4

3(m2 − 1)
cos(mϕ) − 1

3(4m2 − 1)
cos(2mϕ)) with average

surface energy σ0 = 0.001 and fourfold symmetry m = 4. This form of anisotropy is a
good approximation of a crystalline anisotropy by means of trigonometric functions. The
boundary of the domain is assumed to be isolated. For the space discretization, a uniform
rectangular grid with bilinear shape functions is used. Fig. 6 depicts the evolution of the
crystal for grid size 400 × 400 and time step �t = 0.0001 up to time 0.1. The driving
energy for the solidification is the given undercooling; hence the crystal cannot grow be-
yond specific solid volume εs = 0.5. In Fig. 7, the evolution of specific volume and specific
surface is illustrated for grid size 400 × 400 and various time steps. Figure 8 shows the
same data for time step �t = 0.0001 and various grid sizes. The considerable differences
of these macroscopic values for different discretization parameters clearly indicates that
the method only gives reliable results for sufficiently small time steps, and in particular for
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FIG. 6. Variational algorithm. Evolution of crystal up to time 0.1.

FIG. 7. Variational algorithm. Evolution of specific volume and specific surface for different time steps.

FIG. 8. Variational algorithm. Evolution of specific volume and specific surface for different space discretiza-
tions.
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FIG. 9. Crystalline curvature.

sufficiently high grid sizes. This makes the realization of the two-scale method computa-
tionally expensive.

4.2.2. Algorithm of Fully Faceted Interfaces

The method of fully faceted interfaces is designed for crystalline interfaces in two di-
mensions, consisting of a polygonal which has only a limited number of admissible normal
vectors. As in the previous model, the surface energy may be anisotropic; this is here realized
by discrete surface energy densities associated with different admissible normal vectors.
Then the Wulff shape W, the domain which minimizes the surface energy under the side
condition of a given volume, is a convex domain with a polygonal surface (see Fig. 9). An
admissible representation of the crystalline surface is given by a polygonal line where two
adjacent edges have different normal vectors belonging to two adjacent edges of the Wulff
shape. This condition is not as restrictive as it seems; if two adjacent edges have the same
normal they can be replaced by one edge, and if they have normal vectors which are not
adjacent in the Wulff shape, then we may introduce edges of length zero with corresponding
normal vectors in order to connect them.

The method requires a positive kinetic coefficient β = M−1 > 0; it is based on the
evolution law

vs = −M(b + σκ). (30)

The mean curvature κ is approximated by a discrete crystalline mean curvature H(e) asso-
ciated with each element e of the polygonal interface, defined by

H(e) = le(e) + ri(e)

2
· L(e)

l(e)
.

Here, le(e) = 1 or le(e) = −1 if there is a convex or concave corner at the left end of edge e,
ri(e) has the same definition with respect to the right end of the edge, l(e) denotes the length
of edge e, and L(e) is the length of the corresponding edge in the Wulff shape W having the
same normal vector (see Fig. 9). This definition of the crystalline curvature already contains
the anisotropy of the surface energy; it is included in the length L(e) of the edge in the
Wulff shape, but it does not contain the average value σ̄ of the surface energy. Replacing
σκ in (30) by σ̄ H(e) and taking a suitable average b̄ of the quantity b over the edge e gives
a formula for the rate of advance of edge e. As average b̄ we may take the usual integral
average 1

|e|
∫

e b(x) dsx or, alternatively, the value of b at the midpoint of e.
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FIG. 10. Shattering of edges.

The equation for the movement of the interface and the diffusion equation are coupled
in an explicit way. In each time step t (�), first the interface is moved based on the diffusion
field b(�−1) of the previous time step, then the release of latent heat is calculated, and
the diffusion equation is solved. In order to get a good approximation of the crystalline
interface, its movement is done by the following steps. First, edges of the interface which
are longer than a predefined minimal edge length are shattered into smaller edges (see
Fig. 10). Therefore, edges of length zero having different normals than the original edge are
introduced. These normals coincide with one of the two adjacent normals corresponding
to the respective edge in the Wulff shape. In order to determine the right one of these two
normals, one may either use the variation of the diffusion field b along the edge indicating
which part will move faster or use a “trial-and-error” procedure. Then, all the edges are
moved in the normal direction by a distance prescribed by formula (30). Here, the oriented
length of some edges may shrink to zero and then attain negative values; such flipped edges
are removed, and the two adjacent edges are replaced by a single edge whose location is
calculated from the conservation of solid volume (see Fig. 11).

In a continuous time evolution of the crystalline interface it never happens that an edge
in a convex or concave part shrinks to zero, because then the crystalline curvature tends to
±∞. However, in a time discretization this is only true if the time step is suitably adjusted.
Therefore, in practice the movement of the interface is done by several adaptively adjusted
nested time steps within one step of the time discretization. A more detailed description of
the algorithm can be found in [21].

In order to test the method of fully faceted interfaces, the growth of a single crystal in an
undercooled melt is computed, starting from an initial seed being a square with edge length
l = 0.1, which is located at the midpoint of a square with edge length 2.0. The data are
specific heat cV = 1, heat conductivity K = 1, latent heat L = 1, and undercooling �T =
0.7; the boundary of the domain is isolated. Observe that the undercooling is slightly
bigger than before. The minimal surface tension and velocity multiplier are σ̄ = 0.001 and
M̄ = 100; a spatial anisotropy is induced by multiplication of these values with factors 1 and
1.3 for the diagonal and the horizontal/vertical directions, respectively. The discretization
of the heat diffusion equation is the same as that described above. Figure 12 shows the
evolution of the crystal for grid spacing 100 × 100 and time step �t = 0.0001 up to time
0.1. In Fig. 13, the evolutions of specific volume and specific surface are illustrated for
grid size 100 × 100 and various time steps. Figure 14 shows the same data for time step
�t = 0.0001 and various grid spacings. Compared to the variational algorithm, this method
gives more stable results even for moderate values of the discretization parameters. The
employed kinetic undercooling has a regularizing effect on the problem and simplifies its

FIG. 11. Removal of flipped edges.
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FIG. 12. Method of fully faceted interfaces. Evolution of crystal up to time 0.1.

FIG. 13. Method of fully faceted interfaces. Evolution of specific volume and specific surface for different
time steps.

FIG. 14. Method of fully faceted interfaces. Evolution of specific volume and specific surface for different
space discretizations.
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numerical solution; and the prescribed finite number of admissible normal directions leads
to a more stable algorithm.

5. EXAMPLES FOR THE TWO-SCALE METHOD

For the numerical realization of the two-scale model we consider the problem (25), (26)
defined on a rectangular domain � of size [0; 2] × [0; 0.5] (c.f. Fig. 15), with material
parameters cV = 1, K = 1, D = ε2 · D0 with D0 = 1, λ = 0.5, σ = εσ0 with σ0 = 0.002,
initial temperature T (0) = 0, and initial chemical potential µ(0)

s = 0.5. The function b is
defined by b(T, µ) = LT − λµ, and the latent heat L is specified below. The domain is
cooled by the Neumann boundary condition K ∂T

∂n = −5 on part of boundary �4, while the
remaining boundary is isolated. At initial time t = 0 small solid kernels are assumed to
have just formed at the grid points of a uniform square grid with a density of 1/(4ε2); this
gives a local cell problem defined on a square with edge length 2. Let us recall that the two-
scale model is an approximation for a whole family of phase transition problems depending
on scale parameter ε with increasing accuracy for decreasing ε. The discretization of the
macroscopic domain is done using a uniform rectangular grid with 8 × 3 elements. The
problem is essentially one dimensional; in the graphs below we illustrate the properties of
an array of eight crystals in x-direction.

For both problems, the discretization in time is done using an implicit Euler scheme
and the space discretization using finite elements on a uniform rectangular grid using
bilinear shape functions. Here, the local cell problems have to be solved for every node
of the macroscopic grid. This is done with one of the two algorithms described above. The
problems are coupled in a semiimplicit way. First, all the local cell problems are solved
for the temperature of the previous time step; then the heat equation is solved with the new
release of latent heat computed from the cell problems.

The results of the computation using the variational algorithm for the cell problems
are depicted in Figs. 16–21. The cell problem is discretized with time step �t = 0.0001
and a grid consisting of 400 × 400 elements, and the initial solid kernels are assumed to
be disks of radius 0.05. In order to show the influence of macroscopic heat transport on
the evolution of the solid crystals, we use two different values, L = 10 and L = 5, for
the latent heat. Figure 16 shows the evolution of the first crystal (the one at the cooled
boundary �4) and the last crystal (the one at boundary part �2) for latent heat L = 10. In
Fig. 17 the evolution of the macroscopic specific volume and specific surface is depicted
for crystals located at different distances from the cooled boundary. Crystal 0 is the one

FIG. 15. Model problem for two-scale method.
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FIG. 16. Two-scale method with variational algorithm. Evolution of left and right crystal for latent heat
L = 10.

FIG. 17. Two-scale method with variational algorithm. Evolution of specific volume and specific surface for
latent heat L = 10 and different crystals.

FIG. 18. Two-scale method with variational algorithm. Evolution of left and right crystal for latent heat L = 5.
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FIG. 19. Two-scale method with variational algorithm. Evolution of specific surface and specific volume for
latent heat L = 5 and different crystals.

close to the cooled boundary, and crystal 7 is the one at the opposite side. Figure 18 and
19 show the corresponding graphs for latent heat L = 5. In this case, we observe a much
bigger dependence of the microscopic data on the location of the crystal. The reason can
be seen in the graph of the temperature distribution at a fixed time t = 0.1 in Fig. 21. For
large value of the latent heat, the growth of the first crystal releases enough latent heat
to almost compensate for the cooling condition on the boundary; this leads to an almost
uniform temperature field, and the main driving force of the crystal growth is the initial
solutal undercooling, which is essentially the same for all crystals. For small latent heat, the
growth of the first crystals is limited by solute diffusion; hence they cannot release enough
latent heat to consume all the boundary cooling, and the variation of the temperature field as
well as that of the crystals is much bigger. Figure 20 depicts the shape of all eight computed
crystals for latent heat L = 5 and time t = 0.04 in one picture.

FIG. 20. Two-scale method with variational algorithm. Snapshot of all crystals for latent heat L = 5 at time
t = 0.04.
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FIG. 21. Two-scale method with variational algorithm. Macroscopic temperature for latent heat L = 10 and
L = 5 at time t = 0.1.

The same calculations have been done with the method of fully faceted interfaces for the
solution of the local problems. Here, the problem is discretized using a grid of 200 × 200
elements, and the initial solid kernel is a square with edge length 0.05. Figures 22 and 23
show the evolution of the left and right crystals and the specific data for latent heat L = 10.
In Figs. 24 and 25 the corresponding data are depicted for latent heat L = 5. Figure 26
shows the shape of the computed crystals for latent heat L = 5 and time t = 0.04 in one
graph.

Unfortunately, according to the knowledge of the authors there are no experimental
data or analytical results available to verify the computations. Comparing the results of
both methods one observes that the shape of the crystals is slightly different. The crystals
computed with the variational algorithm evolve a little faster than those computed with the
method of fully faceted interfaces. This small difference is also seen in the macroscopic
data, the specific volume, and specific surface, which are the important data for the two-
scale model. The reason is the different physical models the algorithms are based on. While
the variational method allows for a vanishing kinetic coefficient, this is not possible in the

FIG. 22. Two-scale method with algorithm of fully faceted interfaces. Evolution of left and right crystal for
latent heat L = 10.
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FIG. 23. Two-scale method with algorithm of fully faceted interfaces. Evolution of specific data for latent
heat L = 10 and different crystals.

FIG. 24. Two-scale method with algorithm of fully faceted interfaces. Evolution of left and right crystal for
latent heat L = 5.

FIG. 25. Two-scale method with algorithm of fully faceted interfaces. Evolution of specific volume and
specific surface for latent heat L = 5 and different crystals.
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FIG. 26. Two-scale method with algorithm of fully faceted interfaces. Snapshot of all crystals for latent heat
L = 5 at time t = 0.04.

method of fully faceted interfaces. Furthermore, the precise form of the anisotropy of the
surface energy is different in the two algorithms.

6. CONCLUSIONS

We have presented a two-scale model for liquid–solid phase transitions in binary mix-
tures with an equiaxed dendritic microstructure neglecting convection. The model is derived
with the method of formal asymptotic expansions; it is suitable for a small-scale microstruc-
ture and small solute diffusion. The periodicity assumptions required for a mathematically
well-founded derivation of the model are, of course, physically unrealistic, but the model is
perhaps also applicable for the nonperiodic situation, where only the macroscopic properties
of the microstructure are of interest. A numerical discretization of the model is presented,
based on two different methods for the computation of dendritic growth, and results of nu-
merical computations are given. These results show that the method is in principle capable
of describing macroscopic properties of the evolving microstructure at least phenomenolog-
ically. For a sufficiently small-scale microstructure the method is computationally cheaper
than a direct simulation, because it requires the calculation of only a fixed number of crystals,
independent of the scale of the microstructure (but dependent on the grid of the macroscopic
problem). The method is very well suited for parallelization. However, it is still computa-
tionally expensive, because the quite challenging task of computation of crystal growth has
to be carried out for every point of a macroscopic grid. In order to obtain a method capable
of simulating physically realistic and technically important processes, some considerable
further simplification is necessary. Such a simplification may be obtained by replacing the
solution of the microscopic problems with a relation between the temperature field and a
vector M of macroscopic properties of the evolving microstructure, containing, e.g., specific
volume, specific surface, and possibly other quantities. Such relations may have the form
of a direct functional relation M(t, x) = M(T (t, x), Ṫ (t, x)) or of an evolution equation
Ṁ(t, x) = F(T (t, x), M(t, x)), with the latter example being more realistic. It is perhaps
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possible to approximate such a relation by interpolation of the results of a few computations
of our microscopic cell problem for different prescribed evolutions of the temperature. The
thus-obtained constitutive law for the microstructure evolution may be employed to derive
a completely macroscopic model. Such an approach can be also embedded in an adaptive
procedure, where the evolution of a given crystal is computed by interpolation of previously
computed data, if such data are available, and by the crystal growth algorithm, if such data
are not available. This approach will not avoid the microscopic problems completely, but it
may reduce the number of crystals to be computed considerably. In this sense, the results
presented here can be considered as a first step toward a well-founded model suitable for
technically interesting situations.
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